cpu mining - How to code the Simplest BitCoin CPU Miner ...

Technical: Taproot: Why Activate?

This is a follow-up on https://old.reddit.com/Bitcoin/comments/hqzp14/technical_the_path_to_taproot_activation/
Taproot! Everybody wants it!! But... you might ask yourself: sure, everybody else wants it, but why would I, sovereign Bitcoin HODLer, want it? Surely I can be better than everybody else because I swapped XXX fiat for Bitcoin unlike all those nocoiners?
And it is important for you to know the reasons why you, o sovereign Bitcoiner, would want Taproot activated. After all, your nodes (or the nodes your wallets use, which if you are SPV, you hopefully can pester to your wallet vendoimplementor about) need to be upgraded in order for Taproot activation to actually succeed instead of becoming a hot sticky mess.
First, let's consider some principles of Bitcoin.
I'm sure most of us here would agree that the above are very important principles of Bitcoin and that these are principles we would not be willing to remove. If anything, we would want those principles strengthened (especially the last one, financial privacy, which current Bitcoin is only sporadically strong with: you can get privacy, it just requires effort to do so).
So, how does Taproot affect those principles?

Taproot and Your /Coins

Most HODLers probably HODL their coins in singlesig addresses. Sadly, switching to Taproot would do very little for you (it gives a mild discount at spend time, at the cost of a mild increase in fee at receive time (paid by whoever sends to you, so if it's a self-send from a P2PKH or bech32 address, you pay for this); mostly a wash).
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash, so the Taproot output spends 12 bytes more; spending from a P2WPKH requires revealing a 32-byte public key later, which is not needed with Taproot, and Taproot signatures are about 9 bytes smaller than P2WPKH signatures, but the 32 bytes plus 9 bytes is divided by 4 because of the witness discount, so it saves about 11 bytes; mostly a wash, it increases blockweight by about 1 virtual byte, 4 weight for each Taproot-output-input, compared to P2WPKH-output-input).
However, as your HODLings grow in value, you might start wondering if multisignature k-of-n setups might be better for the security of your savings. And it is in multisignature that Taproot starts to give benefits!
Taproot switches to using Schnorr signing scheme. Schnorr makes key aggregation -- constructing a single public key from multiple public keys -- almost as trivial as adding numbers together. "Almost" because it involves some fairly advanced math instead of simple boring number adding, but hey when was the last time you added up your grocery list prices by hand huh?
With current P2SH and P2WSH multisignature schemes, if you have a 2-of-3 setup, then to spend, you need to provide two different signatures from two different public keys. With Taproot, you can create, using special moon math, a single public key that represents your 2-of-3 setup. Then you just put two of your devices together, have them communicate to each other (this can be done airgapped, in theory, by sending QR codes: the software to do this is not even being built yet, but that's because Taproot hasn't activated yet!), and they will make a single signature to authorize any spend from your 2-of-3 address. That's 73 witness bytes -- 18.25 virtual bytes -- of signatures you save!
And if you decide that your current setup with 1-of-1 P2PKH / P2WPKH addresses is just fine as-is: well, that's the whole point of a softfork: backwards-compatibility; you can receive from Taproot users just fine, and once your wallet is updated for Taproot-sending support, you can send to Taproot users just fine as well!
(P2WPKH and P2WSH -- SegWit v0 -- addresses start with bc1q; Taproot -- SegWit v1 --- addresses start with bc1p, in case you wanted to know the difference; in bech32 q is 0, p is 1)
Now how about HODLers who keep all, or some, of their coins on custodial services? Well, any custodial service worth its salt would be doing at least 2-of-3, or probably something even bigger, like 11-of-15. So your custodial service, if it switched to using Taproot internally, could save a lot more (imagine an 11-of-15 getting reduced from 11 signatures to just 1!), which --- we can only hope! --- should translate to lower fees and better customer service from your custodial service!
So I think we can say, very accurately, that the Bitcoin principle --- that YOU are in control of your money --- can only be helped by Taproot (if you are doing multisignature), and, because P2PKH and P2WPKH remain validly-usable addresses in a Taproot future, will not be harmed by Taproot. Its benefit to this principle might be small (it mostly only benefits multisignature users) but since it has no drawbacks with this (i.e. singlesig users can continue to use P2WPKH and P2PKH still) this is still a nice, tidy win!
(even singlesig users get a minor benefit, in that multisig users will now reduce their blockchain space footprint, so that fees can be kept low for everybody; so for example even if you have your single set of private keys engraved on titanium plates sealed in an airtight box stored in a safe buried in a desert protected by angry nomads riding giant sandworms because you're the frickin' Kwisatz Haderach, you still gain some benefit from Taproot)
And here's the important part: if P2PKH/P2WPKH is working perfectly fine with you and you decide to never use Taproot yourself, Taproot will not affect you detrimentally. First do no harm!

Taproot and Your Contracts

No one is an island, no one lives alone. Give and you shall receive. You know: by trading with other people, you can gain expertise in some obscure little necessity of the world (and greatly increase your productivity in that little field), and then trade the products of your expertise for necessities other people have created, all of you thereby gaining gains from trade.
So, contracts, which are basically enforceable agreements that facilitate trading with people who you do not personally know and therefore might not trust.
Let's start with a simple example. You want to buy some gewgaws from somebody. But you don't know them personally. The seller wants the money, you want their gewgaws, but because of the lack of trust (you don't know them!! what if they're scammers??) neither of you can benefit from gains from trade.
However, suppose both of you know of some entity that both of you trust. That entity can act as a trusted escrow. The entity provides you security: this enables the trade, allowing both of you to get gains from trade.
In Bitcoin-land, this can be implemented as a 2-of-3 multisignature. The three signatories in the multisgnature would be you, the gewgaw seller, and the escrow. You put the payment for the gewgaws into this 2-of-3 multisignature address.
Now, suppose it turns out neither of you are scammers (whaaaat!). You receive the gewgaws just fine and you're willing to pay up for them. Then you and the gewgaw seller just sign a transaction --- you and the gewgaw seller are 2, sufficient to trigger the 2-of-3 --- that spends from the 2-of-3 address to a singlesig the gewgaw seller wants (or whatever address the gewgaw seller wants).
But suppose some problem arises. The seller gave you gawgews instead of gewgaws. Or you decided to keep the gewgaws but not sign the transaction to release the funds to the seller. In either case, the escrow is notified, and if it can sign with you to refund the funds back to you (if the seller was a scammer) or it can sign with the seller to forward the funds to the seller (if you were a scammer).
Taproot helps with this: like mentioned above, it allows multisignature setups to produce only one signature, reducing blockchain space usage, and thus making contracts --- which require multiple people, by definition, you don't make contracts with yourself --- is made cheaper (which we hope enables more of these setups to happen for more gains from trade for everyone, also, moon and lambos).
(technology-wise, it's easier to make an n-of-n than a k-of-n, making a k-of-n would require a complex setup involving a long ritual with many communication rounds between the n participants, but an n-of-n can be done trivially with some moon math. You can, however, make what is effectively a 2-of-3 by using a three-branch SCRIPT: either 2-of-2 of you and seller, OR 2-of-2 of you and escrow, OR 2-of-2 of escrow and seller. Fortunately, Taproot adds a facility to embed a SCRIPT inside a public key, so you can have a 2-of-2 Taprooted address (between you and seller) with a SCRIPT branch that can instead be spent with 2-of-2 (you + escrow) OR 2-of-2 (seller + escrow), which implements the three-branched SCRIPT above. If neither of you are scammers (hopefully the common case) then you both sign using your keys and never have to contact the escrow, since you are just using the escrow public key without coordinating with them (because n-of-n is trivial but k-of-n requires setup with communication rounds), so in the "best case" where both of you are honest traders, you also get a privacy boost, in that the escrow never learns you have been trading on gewgaws, I mean ewww, gawgews are much better than gewgaws and therefore I now judge you for being a gewgaw enthusiast, you filthy gewgawer).

Taproot and Your Contracts, Part 2: Cryptographic Boogaloo

Now suppose you want to buy some data instead of things. For example, maybe you have some closed-source software in trial mode installed, and want to pay the developer for the full version. You want to pay for an activation code.
This can be done, today, by using an HTLC. The developer tells you the hash of the activation code. You pay to an HTLC, paying out to the developer if it reveals the preimage (the activation code), or refunding the money back to you after a pre-agreed timeout. If the developer claims the funds, it has to reveal the preimage, which is the activation code, and you can now activate your software. If the developer does not claim the funds by the timeout, you get refunded.
And you can do that, with HTLCs, today.
Of course, HTLCs do have problems:
Fortunately, with Schnorr (which is enabled by Taproot), we can now use the Scriptless Script constuction by Andrew Poelstra. This Scriptless Script allows a new construction, the PTLC or Pointlocked Timelocked Contract. Instead of hashes and preimages, just replace "hash" with "point" and "preimage" with "scalar".
Or as you might know them: "point" is really "public key" and "scalar" is really a "private key". What a PTLC does is that, given a particular public key, the pointlocked branch can be spent only if the spender reveals the private key of the given public key to you.
Another nice thing with PTLCs is that they are deniable. What appears onchain is just a single 2-of-2 signature between you and the developemanufacturer. It's like a magic trick. This signature has no special watermarks, it's a perfectly normal signature (the pledge). However, from this signature, plus some datta given to you by the developemanufacturer (known as the adaptor signature) you can derive the private key of a particular public key you both agree on (the turn). Anyone scraping the blockchain will just see signatures that look just like every other signature, and as long as nobody manages to hack you and get a copy of the adaptor signature or the private key, they cannot get the private key behind the public key (point) that the pointlocked branch needs (the prestige).
(Just to be clear, the public key you are getting the private key from, is distinct from the public key that the developemanufacturer will use for its funds. The activation key is different from the developer's onchain Bitcoin key, and it is the activation key whose private key you will be learning, not the developer's/manufacturer's onchain Bitcoin key).
So:
Taproot lets PTLCs exist onchain because they enable Schnorr, which is a requirement of PTLCs / Scriptless Script.
(technology-wise, take note that Scriptless Script works only for the "pointlocked" branch of the contract; you need normal Script, or a pre-signed nLockTimed transaction, for the "timelocked" branch. Since Taproot can embed a script, you can have the Taproot pubkey be a 2-of-2 to implement the Scriptless Script "pointlocked" branch, then have a hidden script that lets you recover the funds with an OP_CHECKLOCKTIMEVERIFY after the timeout if the seller does not claim the funds.)

Quantum Quibbles!

Now if you were really paying attention, you might have noticed this parenthetical:
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash...)
So wait, Taproot uses raw 32-byte public keys, and not public key hashes? Isn't that more quantum-vulnerable??
Well, in theory yes. In practice, they probably are not.
It's not that hashes can be broken by quantum computes --- they're still not. Instead, you have to look at how you spend from a P2WPKH/P2PKH pay-to-public-key-hash.
When you spend from a P2PKH / P2WPKH, you have to reveal the public key. Then Bitcoin hashes it and checks if this matches with the public-key-hash, and only then actually validates the signature for that public key.
So an unconfirmed transaction, floating in the mempools of nodes globally, will show, in plain sight for everyone to see, your public key.
(public keys should be public, that's why they're called public keys, LOL)
And if quantum computers are fast enough to be of concern, then they are probably fast enough that, in the several minutes to several hours from broadcast to confirmation, they have already cracked the public key that is openly broadcast with your transaction. The owner of the quantum computer can now replace your unconfirmed transaction with one that pays the funds to itself. Even if you did not opt-in RBF, miners are still incentivized to support RBF on RBF-disabled transactions.
So the extra hash is not as significant a protection against quantum computers as you might think. Instead, the extra hash-and-compare needed is just extra validation effort.
Further, if you have ever, in the past, spent from the address, then there exists already a transaction indelibly stored on the blockchain, openly displaying the public key from which quantum computers can derive the private key. So those are still vulnerable to quantum computers.
For the most part, the cryptographers behind Taproot (and Bitcoin Core) are of the opinion that quantum computers capable of cracking Bitcoin pubkeys are unlikely to appear within a decade or two.
So:
For now, the homomorphic and linear properties of elliptic curve cryptography provide a lot of benefits --- particularly the linearity property is what enables Scriptless Script and simple multisignature (i.e. multisignatures that are just 1 signature onchain). So it might be a good idea to take advantage of them now while we are still fairly safe against quantum computers. It seems likely that quantum-safe signature schemes are nonlinear (thus losing these advantages).

Summary

I Wanna Be The Taprooter!

So, do you want to help activate Taproot? Here's what you, mister sovereign Bitcoin HODLer, can do!

But I Hate Taproot!!

That's fine!

Discussions About Taproot Activation

submitted by almkglor to Bitcoin [link] [comments]

Since they're calling for r/btc to be banned...

Maybe it's time to discuss bitcoin's history again. Credit to u/singularity87 for the original post over 3 years ago.

People should get the full story of bitcoin because it is probably one of the strangest of all reddit subs.
bitcoin, the main sub for the bitcoin community is held and run by a person who goes by the pseudonym u/theymos. Theymos not only controls bitcoin, but also bitcoin.org and bitcointalk.com. These are top three communication channels for the bitcoin community, all controlled by just one person.
For most of bitcoin's history this did not create a problem (at least not an obvious one anyway) until around mid 2015. This happened to be around the time a new player appeared on the scene, a for-profit company called Blockstream. Blockstream was made up of/hired many (but not all) of the main bitcoin developers. (To be clear, Blockstream was founded before mid 2015 but did not become publicly active until then). A lot of people, including myself, tried to point out there we're some very serious potential conflicts of interest that could arise when one single company controls most of the main developers for the biggest decentralised and distributed cryptocurrency. There were a lot of unknowns but people seemed to give them the benefit of the doubt because they were apparently about to release some new software called "sidechains" that could offer some benefits to the network.
Not long after Blockstream came on the scene the issue of bitcoin's scalability once again came to forefront of the community. This issue came within the community a number of times since bitcoins inception. Bitcoin, as dictated in the code, cannot handle any more than around 3 transactions per second at the moment. To put that in perspective Paypal handles around 15 transactions per second on average and VISA handles something like 2000 transactions per second. The discussion in the community has been around how best to allow bitcoin to scale to allow a higher number of transactions in a given amount of time. I suggest that if anyone is interested in learning more about this problem from a technical angle, they go to btc and do a search. It's a complex issue but for many who have followed bitcoin for many years, the possible solutions seem relatively obvious. Essentially, currently the limit is put in place in just a few lines of code. This was not originally present when bitcoin was first released. It was in fact put in place afterwards as a measure to stop a bloating attack on the network. Because all bitcoin transactions have to be stored forever on the bitcoin network, someone could theoretically simply transmit a large number of transactions which would have to be stored by the entire network forever. When bitcoin was released, transactions were actually for free as the only people running the network were enthusiasts. In fact a single bitcoin did not even have any specific value so it would be impossible set a fee value. This meant that a malicious person could make the size of the bitcoin ledger grow very rapidly without much/any cost which would stop people from wanting to join the network due to the resource requirements needed to store it, which at the time would have been for very little gain.
Towards the end of the summer last year, this bitcoin scaling debate surfaced again as it was becoming clear that the transaction limit for bitcoin was semi regularly being reached and that it would not be long until it would be regularly hit and the network would become congested. This was a very serious issue for a currency. Bitcoin had made progress over the years to the point of retailers starting to offer it as a payment option. Bitcoin companies like, Microsoft, Paypal, Steam and many more had began to adopt it. If the transaction limit would be constantly maxed out, the network would become unreliable and slow for users. Users and businesses would not be able to make a reliable estimate when their transaction would be confirmed by the network.
Users, developers and businesses (which at the time was pretty much the only real bitcoin subreddit) started to discuss how we should solve the problem bitcoin. There was significant support from the users and businesses behind a simple solution put forward by the developer Gavin Andreesen. Gavin was the lead developer after Satoshi Nakamoto left bitcoin and he left it in his hands. Gavin initially proposed a very simple solution of increasing the limit which was to change the few lines of code to increase the maximum number of transactions that are allowed. For most of bitcoin's history the transaction limit had been set far far higher than the number of transactions that could potentially happen on the network. The concept of increasing the limit one time was based on the fact that history had proven that no issue had been cause by this in the past.
A certain group of bitcoin developers decided that increasing the limit by this amount was too much and that it was dangerous. They said that the increased use of resources that the network would use would create centralisation pressures which could destroy the network. The theory was that a miner of the network with more resources could publish many more transactions than a competing small miner could handle and therefore the network would tend towards few large miners rather than many small miners. The group of developers who supported this theory were all developers who worked for the company Blockstream. The argument from people in support of increasing the transaction capacity by this amount was that there are always inherent centralisation pressure with bitcoin mining. For example miners who can access the cheapest electricity will tend to succeed and that bigger miners will be able to find this cheaper electricity easier. Miners who have access to the most efficient computer chips will tend to succeed and that larger miners are more likely to be able to afford the development of them. The argument from Gavin and other who supported increasing the transaction capacity by this method are essentially there are economies of scale in mining and that these economies have far bigger centralisation pressures than increased resource cost for a larger number of transactions (up to the new limit proposed). For example, at the time the total size of the blockchain was around 50GB. Even for the cost of a 500GB SSD is only $150 and would last a number of years. This is in-comparison to the $100,000's in revenue per day a miner would be making.
Various developers put forth various other proposals, including Gavin Andresen who put forth a more conservative increase that would then continue to increase over time inline with technological improvements. Some of the employees of blockstream also put forth some proposals, but all were so conservative, it would take bitcoin many decades before it could reach a scale of VISA. Even though there was significant support from the community behind Gavin's simple proposal of increasing the limit it was becoming clear certain members of the bitcoin community who were part of Blockstream were starting to become increasingly vitriolic and divisive. Gavin then teamed up with one of the other main bitcoin developers Mike Hearn and released a coded (i.e. working) version of the bitcoin software that would only activate if it was supported by a significant majority of the network. What happened next was where things really started to get weird.
After this free and open source software was released, Theymos, the person who controls all the main communication channels for the bitcoin community implemented a new moderation policy that disallowed any discussion of this new software. Specifically, if people were to discuss this software, their comments would be deleted and ultimately they would be banned temporarily or permanently. This caused chaos within the community as there was very clear support for this software at the time and it seemed our best hope for finally solving the problem and moving on. Instead a censorship campaign was started. At first it 'all' they were doing was banning and removing discussions but after a while it turned into actively manipulating the discussion. For example, if a thread was created where there was positive sentiment for increasing the transaction capacity or being negative about the moderation policies or negative about the actions of certain bitcoin developers, the mods of bitcoin would selectively change the sorting order of threads to 'controversial' so that the most support opinions would be sorted to the bottom of the thread and the most vitriolic would be sorted to the top of the thread. This was initially very transparent as it was possible to see that the most downvoted comments were at the top and some of the most upvoted were at the bottom. So they then implemented hiding the voting scores next to the users name. This made impossible to work out the sentiment of the community and when combined with selectively setting the sorting order to controversial it was possible control what information users were seeing. Also, due to the very very large number of removed comments and users it was becoming obvious the scale of censorship going on. To hide this they implemented code in their CSS for the sub that completely hid comments that they had removed so that the censorship itself was hidden. Anyone in support of scaling bitcoin were removed from the main communication channels. Theymos even proudly announced that he didn't care if he had to remove 90% of the users. He also later acknowledged that he knew he had the ability to block support of this software using the control he had over the communication channels.
While this was all going on, Blockstream and it's employees started lobbying the community by paying for conferences about scaling bitcoin, but with the very very strange rule that no decisions could be made and no complete solutions could be proposed. These conferences were likely strategically (and successfully) created to stunt support for the scaling software Gavin and Mike had released by forcing the community to take a "lets wait and see what comes from the conferences" kind of approach. Since no final solutions were allowed at these conferences, they only served to hinder and splinter the communities efforts to find a solution. As the software Gavin and Mike released called BitcoinXT gained support it started to be attacked. Users of the software were attack by DDOS. Employees of Blockstream were recommending attacks against the software, such as faking support for it, to only then drop support at the last moment to put the network in disarray. Blockstream employees were also publicly talking about suing Gavin and Mike from various different angles simply for releasing this open source software that no one was forced to run. In the end Mike Hearn decided to leave due to the way many members of the bitcoin community had treated him. This was due to the massive disinformation campaign against him on bitcoin. One of the many tactics that are used against anyone who does not support Blockstream and the bitcoin developers who work for them is that you will be targeted in a smear campaign. This has happened to a number of individuals and companies who showed support for scaling bitcoin. Theymos has threatened companies that he will ban any discussion of them on the communication channels he controls (i.e. all the main ones) for simply running software that he disagrees with (i.e. any software that scales bitcoin).
As time passed, more and more proposals were offered, all against the backdrop of ever increasing censorship in the main bitcoin communication channels. It finally come down the smallest and most conservative solution. This solution was much smaller than even the employees of Blockstream had proposed months earlier. As usual there was enormous attacks from all sides and the most vocal opponents were the employees of Blockstream. These attacks still are ongoing today. As this software started to gain support, Blockstream organised more meetings, especially with the biggest bitcoin miners and made a pact with them. They promised that they would release code that would offer an on-chain scaling solution hardfork within about 4 months, but if the miners wanted this they would have to commit to running their software and only their software. The miners agreed and the ended up not running the most conservative proposal possible. This was in February last year. There is no hardfork proposal in sight from the people who agreed to this pact and bitcoin is still stuck with the exact same transaction limit it has had since the limit was put in place about 6 years ago. Gavin has also been publicly smeared by the developers at Blockstream and a plot was made against him to have him removed from the development team. Gavin has now been, for all intents an purposes, expelled from bitcoin development. This has meant that all control of bitcoin development is in the hands of the developers working at Blockstream.
There is a new proposal that offers a market based approach to scaling bitcoin. This essentially lets the market decide. Of course, as usual there has been attacks against it, and verbal attacks from the employees of Blockstream. This has the biggest chance of gaining wide support and solving the problem for good.
To give you an idea of Blockstream; It has hired most of the main and active bitcoin developers and is now synonymous with the "Core" bitcoin development team. They AFAIK no products at all. They have received around $75m in funding. Every single thing they do is supported by theymos. They have started implementing an entirely new economic system for bitcoin against the will of it's users and have blocked any and all attempts to scaling the network in line with the original vision.
Although this comment is ridiculously long, it really only covers the tip of the iceberg. You could write a book on the last two years of bitcoin. The things that have been going on have been mind blowing. One last thing that I think is worth talking about is the u/bashco's claim of vote manipulation.
The users that the video talks about have very very large numbers of downvotes mostly due to them having a very very high chance of being astroturfers. Around about the same time last year when Blockstream came active on the scene every single bitcoin troll disappeared, and I mean literally every single one. In the years before that there were a large number of active anti-bitcoin trolls. They even have an active sub buttcoin. Up until last year you could go down to the bottom of pretty much any thread in bitcoin and see many of the usual trolls who were heavily downvoted for saying something along the lines of "bitcoin is shit", "You guys and your tulips" etc. But suddenly last year they all disappeared. Instead a new type of bitcoin user appeared. Someone who said they were fully in support of bitcoin but they just so happened to support every single thing Blockstream and its employees said and did. They had the exact same tone as the trolls who had disappeared. Their way to talking to people was aggressive, they'd call people names, they had a relatively poor understanding of how bitcoin fundamentally worked. They were extremely argumentative. These users are the majority of the list of that video. When the 10's of thousands of users were censored and expelled from bitcoin they ended up congregating in btc. The strange thing was that the users listed in that video also moved over to btc and spend all day everyday posting troll-like comments and misinformation. Naturally they get heavily downvoted by the real users in btc. They spend their time constantly causing as much drama as possible. At every opportunity they scream about "censorship" in btc while they are happy about the censorship in bitcoin. These people are astroturfers. What someone somewhere worked out, is that all you have to do to take down a community is say that you are on their side. It is an astoundingly effective form of psychological attack.
submitted by CuriousTitmouse to btc [link] [comments]

Bitcoin Cash is currently in a normal governance shaping process.

On the first glance, it looks like there is an ABC versus what other group dynamic going on. But it is a normal governance shaping process. We have still great business adoption, the best user experience among all bitcoin versions and great diverse developer teams.
For me personally it leaves a bad taste, especially in an open source project, when one developer (group) is plowing through a sizeable number of community members. We had this with Greg and Blockstream.
Amaury is using a good tactic and applies his experience from the BTC/BCH fork: keep coding/moving on while being quiet. It reduces attack vectors and keeps his opponents restless. Fair approach and he has the freedom to do that. It’s open source 🤷‍♂️
Now, what about the unhappy ones?
Simple: convince every possible BCH stakeholder (first miners, second economic actors) that the ABC approach isn’t good because of Greg/Blockstream 2.0 risk or what ever reasons. What I see is that ABC/Amaury won’t compromise/negotiate.
What happens if these BCH stakeholders love ABC so much, they won’t run other BCH clients? As a developer, you can plan a fork and you as a user can sell/keep both coins to wait out the storm (a very good reason to buy BCH if you expect a fork). Right now the best approach for ABC opponents is to convince BCH stakeholders and get a public statement about their choice .
But there is a true story as well: there is no appetite for a third fork
submitted by Egon_1 to btc [link] [comments]

Don't blindly follow a narrative, its bad for you and its bad for crypto in general

I mostly lurk around here but I see a pattern repeating over and over again here and in multiple communities so I have to post. I'm just posting this here because I appreciate the fact that this sub is a place of free speech and maybe something productive can come out from this post, while bitcoin is just fucking censorship, memes and moon/lambo posts. If you don't agree, write in the comments why, instead of downvoting. You don't have to upvote either, but when you downvote you are killing the opportunity to have discussion. If you downvote or comment that I'm wrong without providing any counterpoints you are no better than the BTC maxis you despise.
In various communities I see a narrative being used to bring people in and making them follow something without thinking for themselves. In crypto I see this mostly in BTC vs BCH tribalistic arguments:
- BTC community: "Everything that is not BTC is shitcoin." or more recently as stated by adam on twitter, "Everything that is not BTC is a ponzi scheme, even ETH.", "what is ETH supply?", and even that they are doing this for "altruistic" reasons, to "protect" the newcomers. Very convenient for them that they are protecting the newcomers by having them buy their bags
- BCH community: "BTC maxis are dumb", "just increase block size and you will have truly p2p electronic cash", "It is just that simple, there are no trade offs", "if you don't agree with me you are a BTC maxi", "BCH is satoshi's vision for p2p electronic cash"
It is not exclusive to crypto but also politics, and you see this over and over again on twitter and on reddit.
My point is, that narratives are created so people don't have to think, they just choose a narrative that is easy to follow and makes sense for them, and stick with it. And people keep repeating these narratives to bring other people in, maybe by ignorance, because they truly believe it without questioning, or maybe by self interest, because they want to shill you their bags.
Because this is BCH community, and because bitcoin is censored, so I can't post there about the problems in the BTC narrative (some of which are IMO correctly identified by BCH community), I will stick with the narrative I see in the BCH community.
The culprit of this post was firstly this post by user u/scotty321 "The BTC Paradox: “A 1 MB blocksize enables poor people to run their own node!” “Okay, then what?” “Poor people won’t be able to use the network!”". You will see many posts of this kind being made by u/Egon_1 also. Then you have also this comment in that thread by u/fuck_____________1 saying that people that want to run their own nodes are retarded and that there is no reason to want to do that. "Just trust block explorer websites". And the post and comment were highly upvoted. Really? You really think that there is no problem in having just a few nodes on the network? And that the only thing that secures the network are miners?
As stated by user u/co1nsurf3r in that thread:
While I don't think that everybody needs to run a node, a full node does publish blocks it considers valid to other nodes. This does not amount to much if you only consider a single node in the network, but many "honest" full nodes in the network will reduce the probability of a valid block being withheld from the network by a collusion of "hostile" node operators.
But surely this will not get attention here, and will be downvoted by those people that promote the narrative that there is no trade off in increasing the blocksize and the people that don't see it are retarded or are btc maxis.
The only narrative I stick to and have been for many years now is that cryptocurrency takes power from the government and gives power to the individual, so you are not restricted to your economy as you can participate in the global economy. There is also the narrative of banking the bankless, which I hope will come true, but it is not a use case we are seeing right now.
Some people would argue that removing power from gov's is a bad thing, but you can't deny the fact that gov's can't control crypto (at least we would want them not to).
But, if you really want the individuals to remain in control of their money and transact with anyone in the world, the network needs to be very resistant to any kind of attacks. How can you have p2p electronic cash if your network just has a handful couple of nodes and the chinese gov can locate them and just block communication to them? I'm not saying that this is BCH case, I'm just refuting the fact that there is no value in running your own node. If you are relying on block explorers, the gov can just block the communication to the block explorer websites. Then what? Who will you trust to get chain information? The nodes needs to be decentralized so if you take one node down, many more can appear so it is hard to censor and you don't have few points of failure.
Right now BTC is focusing on that use case of being difficult to censor. But with that comes the problem that is very expensive to transact on the network, which breaks the purpose of anyone being able to participate. Obviously I do think that is also a major problem, and lightning network is awful right now and probably still years away of being usable, if it ever will. The best solution is up for debate, but thinking that you just have to increase the blocksize and there is no trade off is just naive or misleading. BCH is doing a good thing in trying to come with a solution that is inclusive and promotes cheap and fast transactions, but also don't forget centralization is a major concern and nothing to just shrug off.
Saying that "a 1 MB blocksize enables poor people to run their own" and that because of that "Poor people won’t be able to use the network" is a misrepresentation designed to promote a narrative. Because 1MB is not to allow "poor" people to run their node, it is to facilitate as many people to run a node to promote decentralization and avoid censorship.
Also an elephant in the room that you will not see being discussed in either BTC or BCH communities is that mining pools are heavily centralized. And I'm not talking about miners being mostly in china, but also that big pools control a lot of hashing power both in BTC and BCH, and that is terrible for the purpose of crypto.
Other projects are trying to solve that. Will they be successful? I don't know, I hope so, because I don't buy into any narrative. There are many challenges and I want to see crypto succeed as a whole. As always guys, DYOR and always question if you are not blindly following a narrative. I'm sure I will be called BTC maxi but maybe some people will find value in this. Don't trust guys that are always posting silly "gocha's" against the other "tribe".
EDIT: User u/ShadowOfHarbringer has pointed me to some threads that this has been discussed in the past and I will just put my take on them here for visibility, as I will be using this thread as a reference in future discussions I engage:
When there was only 2 nodes in the network, adding a third node increased redundancy and resiliency of the network as a whole in a significant way. When there is thousands of nodes in the network, adding yet another node only marginally increase the redundancy and resiliency of the network. So the question then becomes a matter of personal judgement of how much that added redundancy and resiliency is worth. For the absolutist, it is absolutely worth it and everyone on this planet should do their part.
What is the magical number of nodes that makes it counterproductive to add new nodes? Did he do any math? Does BCH achieve this holy grail safe number of nodes? Guess what, nobody knows at what number of nodes is starts to be marginally irrelevant to add new nodes. Even BTC today could still not have enough nodes to be safe. If you can't know for sure that you are safe, it is better to try to be safer than sorry. Thousands of nodes is still not enough, as I said, it is much cheaper to run a full node as it is to mine. If it costs millions in hash power to do a 51% attack on the block generation it means nothing if it costs less than $10k to run more nodes than there are in total in the network and cause havoc and slowing people from using the network. Or using bot farms to DDoS the 1000s of nodes in the network. Not all attacks are monetarily motivated. When you have governments with billions of dollars at their disposal and something that could threat their power they could do anything they could to stop people from using it, and the cheapest it is to do so the better
You should run a full node if you're a big business with e.g. >$100k/month in volume, or if you run a service that requires high fraud resistance and validation certainty for payments sent your way (e.g. an exchange). For most other users of Bitcoin, there's no good reason to run a full node unless you reel like it.
Shouldn't individuals benefit from fraud resistance too? Why just businesses?
Personally, I think it's a good idea to make sure that people can easily run a full node because they feel like it, and that it's desirable to keep full node resource requirements reasonable for an enthusiast/hobbyist whenever possible. This might seem to be at odds with the concept of making a worldwide digital cash system in which all transactions are validated by everybody, but after having done the math and some of the code myself, I believe that we should be able to have our cake and eat it too.
This is recurrent argument, but also no math provided, "just trust me I did the math"
The biggest reason individuals may want to run their own node is to increase their privacy. SPV wallets rely on others (nodes or ElectronX servers) who may learn their addresses.
It is a reason and valid one but not the biggest reason
If you do it for fun and experimental it good. If you do it for extra privacy it's ok. If you do it to help the network don't. You are just slowing down miners and exchanges.
Yes it will slow down the network, but that shows how people just don't get the the trade off they are doing
I will just copy/paste what Satoshi Nakamoto said in his own words. "The current system where every user is a network node is not the intended configuration for large scale. That would be like every Usenet user runs their own NNTP server."
Another "it is all or nothing argument" and quoting satoshi to try and prove their point. Just because every user doesn't need to be also a full node doesn't mean that there aren't serious risks for having few nodes
For this to have any importance in practice, all of the miners, all of the exchanges, all of the explorers and all of the economic nodes should go rogue all at once. Collude to change consensus. If you have a node you can detect this. It doesn't do much, because such a scenario is impossible in practice.
Not true because as I said, you can DDoS the current nodes or run more malicious nodes than that there currently are, because is cheap to do so
Non-mining nodes don't contribute to adding data to the blockchain ledger, but they do play a part in propagating transactions that aren't yet in blocks (the mempool). Bitcoin client implementations can have different validations for transactions they see outside of blocks and transactions they see inside of blocks; this allows for "soft forks" to add new types of transactions without completely breaking older clients (while a transaction is in the mempool, a node receiving a transaction that's a new/unknown type could drop it as not a valid transaction (not propagate it to its peers), but if that same transaction ends up in a block and that node receives the block, they accept the block (and the transaction in it) as valid (and therefore don't get left behind on the blockchain and become a fork). The participation in the mempool is a sort of "herd immunity" protection for the network, and it was a key talking point for the "User Activated Soft Fork" (UASF) around the time the Segregated Witness feature was trying to be added in. If a certain percentage of nodes updated their software to not propagate certain types of transactions (or not communicate with certain types of nodes), then they can control what gets into a block (someone wanting to get that sort of transaction into a block would need to communicate directly to a mining node, or communicate only through nodes that weren't blocking that sort of transaction) if a certain threshold of nodes adheres to those same validation rules. It's less specific than the influence on the blockchain data that mining nodes have, but it's definitely not nothing.
The first reasonable comment in that thread but is deep down there with only 1 upvote
The addition of non-mining nodes does not add to the efficiency of the network, but actually takes away from it because of the latency issue.
That is true and is actually a trade off you are making, sacrificing security to have scalability
The addition of non-mining nodes has little to no effect on security, since you only need to destroy mining ones to take down the network
It is true that if you destroy mining nodes you take down the network from producing new blocks (temporarily), even if you have a lot of non mining nodes. But, it still better than if you take down the mining nodes who are also the only full nodes. If the miners are not the only full nodes, at least you still have full nodes with the blockchain data so new miners can download it and join. If all the miners are also the full nodes and you take them down, where will you get all the past blockchain data to start mining again? Just pray that the miners that were taken down come back online at some point in the future?
The real limiting factor is ISP's: Imagine a situation where one service provider defrauds 4000 different nodes. Did the excessive amount of nodes help at all, when they have all been defrauded by the same service provider? If there are only 30 ISP's in the world, how many nodes do we REALLY need?
You cant defraud if the connection is encrypted. Use TOR for example, it is hard for ISP's to know what you are doing.
Satoshi specifically said in the white paper that after a certain point, number of nodes needed plateaus, meaning after a certain point, adding more nodes is actually counterintuitive, which we also demonstrated. (the latency issue). So, we have adequately demonstrated why running non-mining nodes does not add additional value or security to the network.
Again, what is the number of nodes that makes it counterproductive? Did he do any math?
There's also the matter of economically significant nodes and the role they play in consensus. Sure, nobody cares about your average joe's "full node" where he is "keeping his own ledger to keep the miners honest", as it has no significance to the economy and the miners couldn't give a damn about it. However, if say some major exchanges got together to protest a miner activated fork, they would have some protest power against that fork because many people use their service. Of course, there still needs to be miners running on said "protest fork" to keep the chain running, but miners do follow the money and if they got caught mining a fork that none of the major exchanges were trading, they could be coaxed over to said "protest fork".
In consensus, what matters about nodes is only the number, economical power of the node doesn't mean nothing, the protocol doesn't see the net worth of the individual or organization running that node.
Running a full node that is not mining and not involved is spending or receiving payments is of very little use. It helps to make sure network traffic is broadcast, and is another copy of the blockchain, but that is all (and is probably not needed in a healthy coin with many other nodes)
He gets it right (broadcasting transaction and keeping a copy of the blockchain) but he dismisses the importance of it
submitted by r0bo7 to btc [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

[ Bitcoin ] Technical: Taproot: Why Activate?

Topic originally posted in Bitcoin by almkglor [link]
This is a follow-up on https://old.reddit.com/Bitcoin/comments/hqzp14/technical_the_path_to_taproot_activation/
Taproot! Everybody wants it!! But... you might ask yourself: sure, everybody else wants it, but why would I, sovereign Bitcoin HODLer, want it? Surely I can be better than everybody else because I swapped XXX fiat for Bitcoin unlike all those nocoiners?
And it is important for you to know the reasons why you, o sovereign Bitcoiner, would want Taproot activated. After all, your nodes (or the nodes your wallets use, which if you are SPV, you hopefully can pester to your wallet vendoimplementor about) need to be upgraded in order for Taproot activation to actually succeed instead of becoming a hot sticky mess.
First, let's consider some principles of Bitcoin.
I'm sure most of us here would agree that the above are very important principles of Bitcoin and that these are principles we would not be willing to remove. If anything, we would want those principles strengthened (especially the last one, financial privacy, which current Bitcoin is only sporadically strong with: you can get privacy, it just requires effort to do so).
So, how does Taproot affect those principles?

Taproot and Your /Coins

Most HODLers probably HODL their coins in singlesig addresses. Sadly, switching to Taproot would do very little for you (it gives a mild discount at spend time, at the cost of a mild increase in fee at receive time (paid by whoever sends to you, so if it's a self-send from a P2PKH or bech32 address, you pay for this); mostly a wash).
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash, so the Taproot output spends 12 bytes more; spending from a P2WPKH requires revealing a 32-byte public key later, which is not needed with Taproot, and Taproot signatures are about 9 bytes smaller than P2WPKH signatures, but the 32 bytes plus 9 bytes is divided by 4 because of the witness discount, so it saves about 11 bytes; mostly a wash, it increases blockweight by about 1 virtual byte, 4 weight for each Taproot-output-input, compared to P2WPKH-output-input).
However, as your HODLings grow in value, you might start wondering if multisignature k-of-n setups might be better for the security of your savings. And it is in multisignature that Taproot starts to give benefits!
Taproot switches to using Schnorr signing scheme. Schnorr makes key aggregation -- constructing a single public key from multiple public keys -- almost as trivial as adding numbers together. "Almost" because it involves some fairly advanced math instead of simple boring number adding, but hey when was the last time you added up your grocery list prices by hand huh?
With current P2SH and P2WSH multisignature schemes, if you have a 2-of-3 setup, then to spend, you need to provide two different signatures from two different public keys. With Taproot, you can create, using special moon math, a single public key that represents your 2-of-3 setup. Then you just put two of your devices together, have them communicate to each other (this can be done airgapped, in theory, by sending QR codes: the software to do this is not even being built yet, but that's because Taproot hasn't activated yet!), and they will make a single signature to authorize any spend from your 2-of-3 address. That's 73 witness bytes -- 18.25 virtual bytes -- of signatures you save!
And if you decide that your current setup with 1-of-1 P2PKH / P2WPKH addresses is just fine as-is: well, that's the whole point of a softfork: backwards-compatibility; you can receive from Taproot users just fine, and once your wallet is updated for Taproot-sending support, you can send to Taproot users just fine as well!
(P2WPKH and P2WSH -- SegWit v0 -- addresses start with bc1q; Taproot -- SegWit v1 --- addresses start with bc1p, in case you wanted to know the difference; in bech32 q is 0, p is 1)
Now how about HODLers who keep all, or some, of their coins on custodial services? Well, any custodial service worth its salt would be doing at least 2-of-3, or probably something even bigger, like 11-of-15. So your custodial service, if it switched to using Taproot internally, could save a lot more (imagine an 11-of-15 getting reduced from 11 signatures to just 1!), which --- we can only hope! --- should translate to lower fees and better customer service from your custodial service!
So I think we can say, very accurately, that the Bitcoin principle --- that YOU are in control of your money --- can only be helped by Taproot (if you are doing multisignature), and, because P2PKH and P2WPKH remain validly-usable addresses in a Taproot future, will not be harmed by Taproot. Its benefit to this principle might be small (it mostly only benefits multisignature users) but since it has no drawbacks with this (i.e. singlesig users can continue to use P2WPKH and P2PKH still) this is still a nice, tidy win!
(even singlesig users get a minor benefit, in that multisig users will now reduce their blockchain space footprint, so that fees can be kept low for everybody; so for example even if you have your single set of private keys engraved on titanium plates sealed in an airtight box stored in a safe buried in a desert protected by angry nomads riding giant sandworms because you're the frickin' Kwisatz Haderach, you still gain some benefit from Taproot)
And here's the important part: if P2PKH/P2WPKH is working perfectly fine with you and you decide to never use Taproot yourself, Taproot will not affect you detrimentally. First do no harm!

Taproot and Your Contracts

No one is an island, no one lives alone. Give and you shall receive. You know: by trading with other people, you can gain expertise in some obscure little necessity of the world (and greatly increase your productivity in that little field), and then trade the products of your expertise for necessities other people have created, all of you thereby gaining gains from trade.
So, contracts, which are basically enforceable agreements that facilitate trading with people who you do not personally know and therefore might not trust.
Let's start with a simple example. You want to buy some gewgaws from somebody. But you don't know them personally. The seller wants the money, you want their gewgaws, but because of the lack of trust (you don't know them!! what if they're scammers??) neither of you can benefit from gains from trade.
However, suppose both of you know of some entity that both of you trust. That entity can act as a trusted escrow. The entity provides you security: this enables the trade, allowing both of you to get gains from trade.
In Bitcoin-land, this can be implemented as a 2-of-3 multisignature. The three signatories in the multisgnature would be you, the gewgaw seller, and the escrow. You put the payment for the gewgaws into this 2-of-3 multisignature address.
Now, suppose it turns out neither of you are scammers (whaaaat!). You receive the gewgaws just fine and you're willing to pay up for them. Then you and the gewgaw seller just sign a transaction --- you and the gewgaw seller are 2, sufficient to trigger the 2-of-3 --- that spends from the 2-of-3 address to a singlesig the gewgaw seller wants (or whatever address the gewgaw seller wants).
But suppose some problem arises. The seller gave you gawgews instead of gewgaws. Or you decided to keep the gewgaws but not sign the transaction to release the funds to the seller. In either case, the escrow is notified, and if it can sign with you to refund the funds back to you (if the seller was a scammer) or it can sign with the seller to forward the funds to the seller (if you were a scammer).
Taproot helps with this: like mentioned above, it allows multisignature setups to produce only one signature, reducing blockchain space usage, and thus making contracts --- which require multiple people, by definition, you don't make contracts with yourself --- is made cheaper (which we hope enables more of these setups to happen for more gains from trade for everyone, also, moon and lambos).
(technology-wise, it's easier to make an n-of-n than a k-of-n, making a k-of-n would require a complex setup involving a long ritual with many communication rounds between the n participants, but an n-of-n can be done trivially with some moon math. You can, however, make what is effectively a 2-of-3 by using a three-branch SCRIPT: either 2-of-2 of you and seller, OR 2-of-2 of you and escrow, OR 2-of-2 of escrow and seller. Fortunately, Taproot adds a facility to embed a SCRIPT inside a public key, so you can have a 2-of-2 Taprooted address (between you and seller) with a SCRIPT branch that can instead be spent with 2-of-2 (you + escrow) OR 2-of-2 (seller + escrow), which implements the three-branched SCRIPT above. If neither of you are scammers (hopefully the common case) then you both sign using your keys and never have to contact the escrow, since you are just using the escrow public key without coordinating with them (because n-of-n is trivial but k-of-n requires setup with communication rounds), so in the "best case" where both of you are honest traders, you also get a privacy boost, in that the escrow never learns you have been trading on gewgaws, I mean ewww, gawgews are much better than gewgaws and therefore I now judge you for being a gewgaw enthusiast, you filthy gewgawer).

Taproot and Your Contracts, Part 2: Cryptographic Boogaloo

Now suppose you want to buy some data instead of things. For example, maybe you have some closed-source software in trial mode installed, and want to pay the developer for the full version. You want to pay for an activation code.
This can be done, today, by using an HTLC. The developer tells you the hash of the activation code. You pay to an HTLC, paying out to the developer if it reveals the preimage (the activation code), or refunding the money back to you after a pre-agreed timeout. If the developer claims the funds, it has to reveal the preimage, which is the activation code, and you can now activate your software. If the developer does not claim the funds by the timeout, you get refunded.
And you can do that, with HTLCs, today.
Of course, HTLCs do have problems:
Fortunately, with Schnorr (which is enabled by Taproot), we can now use the Scriptless Script constuction by Andrew Poelstra. This Scriptless Script allows a new construction, the PTLC or Pointlocked Timelocked Contract. Instead of hashes and preimages, just replace "hash" with "point" and "preimage" with "scalar".
Or as you might know them: "point" is really "public key" and "scalar" is really a "private key". What a PTLC does is that, given a particular public key, the pointlocked branch can be spent only if the spender reveals the private key of the given private key to you.
Another nice thing with PTLCs is that they are deniable. What appears onchain is just a single 2-of-2 signature between you and the developemanufacturer. It's like a magic trick. This signature has no special watermarks, it's a perfectly normal signature (the pledge). However, from this signature, plus some datta given to you by the developemanufacturer (known as the adaptor signature) you can derive the private key of a particular public key you both agree on (the turn). Anyone scraping the blockchain will just see signatures that look just like every other signature, and as long as nobody manages to hack you and get a copy of the adaptor signature or the private key, they cannot get the private key behind the public key (point) that the pointlocked branch needs (the prestige).
(Just to be clear, the public key you are getting the private key from, is distinct from the public key that the developemanufacturer will use for its funds. The activation key is different from the developer's onchain Bitcoin key, and it is the activation key whose private key you will be learning, not the developer's/manufacturer's onchain Bitcoin key).
So:
Taproot lets PTLCs exist onchain because they enable Schnorr, which is a requirement of PTLCs / Scriptless Script.
(technology-wise, take note that Scriptless Script works only for the "pointlocked" branch of the contract; you need normal Script, or a pre-signed nLockTimed transaction, for the "timelocked" branch. Since Taproot can embed a script, you can have the Taproot pubkey be a 2-of-2 to implement the Scriptless Script "pointlocked" branch, then have a hidden script that lets you recover the funds with an OP_CHECKLOCKTIMEVERIFY after the timeout if the seller does not claim the funds.)

Quantum Quibbles!

Now if you were really paying attention, you might have noticed this parenthetical:
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash...)
So wait, Taproot uses raw 32-byte public keys, and not public key hashes? Isn't that more quantum-vulnerable??
Well, in theory yes. In practice, they probably are not.
It's not that hashes can be broken by quantum computes --- they're still not. Instead, you have to look at how you spend from a P2WPKH/P2PKH pay-to-public-key-hash.
When you spend from a P2PKH / P2WPKH, you have to reveal the public key. Then Bitcoin hashes it and checks if this matches with the public-key-hash, and only then actually validates the signature for that public key.
So an unconfirmed transaction, floating in the mempools of nodes globally, will show, in plain sight for everyone to see, your public key.
(public keys should be public, that's why they're called public keys, LOL)
And if quantum computers are fast enough to be of concern, then they are probably fast enough that, in the several minutes to several hours from broadcast to confirmation, they have already cracked the public key that is openly broadcast with your transaction. The owner of the quantum computer can now replace your unconfirmed transaction with one that pays the funds to itself. Even if you did not opt-in RBF, miners are still incentivized to support RBF on RBF-disabled transactions.
So the extra hash is not as significant a protection against quantum computers as you might think. Instead, the extra hash-and-compare needed is just extra validation effort.
Further, if you have ever, in the past, spent from the address, then there exists already a transaction indelibly stored on the blockchain, openly displaying the public key from which quantum computers can derive the private key. So those are still vulnerable to quantum computers.
For the most part, the cryptographers behind Taproot (and Bitcoin Core) are of the opinion that quantum computers capable of cracking Bitcoin pubkeys are unlikely to appear within a decade or two.
So:
For now, the homomorphic and linear properties of elliptic curve cryptography provide a lot of benefits --- particularly the linearity property is what enables Scriptless Script and simple multisignature (i.e. multisignatures that are just 1 signature onchain). So it might be a good idea to take advantage of them now while we are still fairly safe against quantum computers. It seems likely that quantum-safe signature schemes are nonlinear (thus losing these advantages).

Summary

I Wanna Be The Taprooter!

So, do you want to help activate Taproot? Here's what you, mister sovereign Bitcoin HODLer, can do!

But I Hate Taproot!!

That's fine!

Discussions About Taproot Activation

almkglor your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
[deleted comment]
[deleted comment]
[deleted comment]
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

Voici LA chronique à découvrir, intitulée: La guerre contre Bitcoin. Idéal pour comprendre certains tenants et aboutissants

Voici LA chronique à découvrir, intitulée: La guerre contre Bitcoin. Idéal pour comprendre certains tenants et aboutissants… Bonne découverte!
La guerre contre Bitcoin
Bitcoin est peut-être le meilleur outil de liberté économique de cette génération, et peut-être depuis plusieurs générations. Malheureusement, Bitcoin a été furieusement étouffé par une guerre civile brutale depuis environ cinq ans maintenant; menée par des ingénieurs sociaux professionnels de certaines des entreprises les plus puissantes des médias sociaux. Leur talent dans l'art et la science de la manipulation a permis aux "Bitcoiners" de se battre largement entre eux plutôt que de chercher à créer des modèles commerciaux innovants basés sur les données qui pourraient révolutionner l'économie mondiale via Bitcoin.
À la suite de la guerre civile de Bitcoin, trois versions concurrentes de Bitcoin ont vu le jour (BTC, BCH et BitcoinSV ), mais il en est de même pour environ 3000 autres projets et jetons de « crypto-monnaie » se faisant passer pour des entreprises légitimes, souvent jusqu'à un "exit scam" presque garanti, le fait de disparaitre du jour au lendemain avec tout l'argent des utilisateurs. Le principal bienfaiteur de la guerre civile Bitcoin a été Ethereum: une cryptomonnaie qui fonctionne comme une machine à états mondiale et permet un déploiement facile de tokens et de contrats intelligents. Mais le protocole Ethereum ne peut pas évoluer, et parmi les milliers de projets lancés, seule une poignée pourrait même être présentés comme pouvant devenir des entreprises légitimes. La plupart des autres sont des stratagèmes de Ponzi ou des émissions d'actions illégales enrichissant les développeurs et escroquant les investisseurs amateurs.
C'est dans ce contexte que les défenseurs de BTC et de BCH, les porte-parole d'Ethereum et les altcoiners (nom donné pour englober toutes les autres cryptomonnaies) de tous bords s'alignent pour attaquer sans cesse le protocole Bitcoin préservé uniquement par le réseau BSV. Une industrie composée presque entièrement de criminels, de fraudes et d'arnaqueurs s'est unie contre BSV citant - et c'est là l'ironie! - une prétendue fraude et arnaque présumée qui serait l'existence même de BSV.
Nous devons nous demander pourquoi ?
Quel est le différenciateur clé de BSV?
Pourquoi tous les arnaqueurs se sont-ils unis contre lui?
Je suis fermement convaincu que pour la plupart, la motivation est la peur de la capacité de BSV à absorber l'économie mondiale et tous les autres projets «crypto» qui vont avec. Pour les autres, ou ceux qui ne comprennent pas le pouvoir du Bitcoin, ils sont entraînés dans une guerre civile et culturelle qui les dépasse. Il est essentiel de comprendre les pouvoirs en jeu et leurs implications pour Bitcoin et l'économie mondiale.
Une histoire brève de Bitcoin
Bitcoin a été lancé avec un "livre blanc" sur la liste de diffusion de cryptographie en 2008. Le pseudonyme « Satoshi Nakamoto » a déclaré une solution au problème de la double dépense. Or il s'agit là du problème de tous les systèmes de paiement électronique précédents, et c'était le seul facteur limitant l'adoption d'une monnaie digitale fonctionnelle. Mais qu'est-ce que le problème de la double dépense ? Pour faire simple, il était impossible de prouver exactement qui possédait quelles unités d'argent sur des registres distribués, de sorte que les utilisateurs ne pouvaient pas avoir confiance dans le système, et ces projets mourraient assez vite. Bitcoin a résolu ce problème avec un concept appelé la « preuve de travail ». Il pose la question: qui a utilisé le plus de puissance de calcul pour résoudre des énigmes arbitraires ? ceci afin de rendre compte de l'état du registre d'une manière qui coûte de l'argent, de sorte qu'il y ait une incitation économique à tenir un compte honnête des avoirs de chacun des participants. Ce processus est souvent appelé « exploitation minière » car les nœuds honnêtes qui maintiennent l'état du registre sont récompensés pour leur travail avec des nouveaux Bitcoins toutes les dix minutes - un peu à la même manière d'un mineur d'or qui est récompensé par de l'or en échange de son travail.
Étant donné que Bitcoin n'avait aucune valeur lors de son lancement, il était extrêmement facile à miner et également gratuit d'envoyer des tonnes de transactions. En théorie, il s'agissait d'un vecteur d'attaque par déni de service (DoS). Une attaque DoS ou DDoS se produit lorsque les nœuds d'un réseau sont inondés de plus de données qu'ils ne peuvent en gérer et qu'ils se mettent donc à planter. Sur le jeune réseau Bitcoin, un crash comme celui-ci aurait été considéré comme un échec du réseau. Pour empêcher cela, un plafond de 1 Mo de données par chaque dix minutes de transactions a été codé en dur dans le logiciel - semant la première graine de la guerre civile Bitcoin. De 2009 à 2017, cette limite de 1 Mo sur le total des transactions était l'aspect technique le plus controversé du bitcoin et le déclencheur de la plus grande guerre civile virtuelle de l'univers de la cryptomonnaie.
Pourquoi est-ce aussi important?
Une seule transaction basique Bitcoin est relativement petite du point de vue des données, donc 1 Mo toutes les dix minutes donne environ trois à sept transactions par seconde avant que le réseau ne devienne trop encombré. Satoshi Nakamoto le créateur, a plaidé pour un nombre de transactions du niveau de Visa et bien plus, ainsi que son successeur direct en tant que développeur principal du projet, Gavin Andresen. Certains des premiers Bitcoiners influents comme Mike Hearn et Jeff Garzik ont ​​également plaidé pour plus de données par bloc pour permettre à Bitcoin de se développer et de rester le meilleur système de paiement électronique. Ils étaient pour des «gros blocs» contrairement au camp des «petits blocs» qui préconisaient une permanence de la limitation de 1 Mo des blocs.
Le camp des "petits blocs" estiment que Bitcoin n'est pas un réseau de paiement, mais plutôt qu'il s'apparente davantage à une banque décentralisée conçue pour stocker des Bitcoins qui ne bougent jamais: une sorte de coffre-fort d'or numérique. Ils voulaient que la limite de taille des blocs de 1 Mo reste permanente sous les auspices de chaque personne exécutant un «nœud complet» sans avoir à payer trop d'espace sur le disque dur. Cela signifierait qu'en période de congestion, les frais de transaction deviendraient absurdement élevés, mais cela n'aurait pas d'importance car le bitcoin ne devrait pas être utilisé pour des envois sauf en grosses quantités de toute façon, selon eux. En décembre 2017 les frais de BTC ont ainsi atteint les $50 par transaction. L'autre problème est que s'il est bon marché de rejoindre la gouvernance de Bitcoin, alors le réseau est facile à attaquer par Sybil, et je dirais que BTC est régi par des sybilles à ce jour.
Le camp des "gros-blocs" estime que tout le monde sur terre devrait être en mesure d'échanger et de faire ses affaires sur Bitcoin pour des frais infimes, de l'ordre d'un centième ou millième de centime par transaction, afin d'apporter à la population mondiale la liberté monétaire, y compris aux pays les plus pauvres qui sont gardés en dehors du système actuel car considérés comme pas assez profitables pour des entreprises comme Visa.
Les "petits-blocs" pensent que tout le monde devrait être en mesure de gérer soi-même le registre mondial chez soi, mais que seules certaines personnes très riches devraient pouvoir effectuer des transactions, ce qui est le cas quand les frais sont à $50 par transaction comme en 2017.
Après des années de querelles, en 2017, Bitcoin s'est scindé en deux chaînes distinctes, et en 2018, il s'est à nouveau divisé.
Alors quelle est la différence entre ces trois versions ?
BTC est actuellement la version qui a le prix le plus élevé, avec la plus petite taille de bloc et la plus grande puissance de calcul. On peut dire que BTC à gagné la guerre médiatique. Malheureusement, il est régi par des développeurs et des sybilles qui contrôlent le consensus grâce à une utilisation intelligente de logiciels malveillants appelés «soft-fork» qui leur permet de saper les règles du Bitcoin. Ils utilisent ce pouvoir pour changer les règles des transactions en mentant aux nœuds et en leur disant de les valider quand même. Toute la culture BTC consiste à acheter du BTC afin de le conserver jusqu'à un moment dans le futur où il serait revendu à un prix exorbitant. Le but est de spéculer au maximum. Les paiements avec BTC, particulièrement les petits paiements, ou les transactions de toute nature non-monétaires, sont méprisés.
BCH est un réseau basé sur Bitcoin qui pense que les blocs devraient être à peine légèrement plus grands, mais ils ont également des développeurs en charge des règles, tout comme BTC, et ils pensent que Bitcoin devrait être utilisé uniquement pour le commerce de détail, mais rien de plus. Le réseau change de règles tous les six mois. Les transactions non commerciales sont en général méprisées. Un nouveau scindement de BCH est prévu pour novembre 2020 suite à des conflits internes et l'incapacité à avoir un système de gouvernance dans un projet où les règles changent en permanence.
BSV est la version restaurée du protocole Bitcoin original avec tous les paramètres ouverts afin que les nœuds honnêtes puissent s'engager dans un consensus conformément au livre blanc de Bitcoin - par la preuve de travail ! Le protocole est gravé dans la pierre afin que les développeurs de logiciels ne puissent pas bricoler les règles. Cela permet aux entreprises de planifier des décennies d'utilisation du réseau et d'investir en toute confiance. Il s'agit d'apporter une réelle innovation technologique au monde plutôt que de spéculer. En tant que seul réseau bitcoin totalement sans besoin d'autorisation, le commerce de toute nature est encouragé sur BSV. Tout, allant des réseaux sociaux aux expériences de science des données météorologiques ou aux tests de disponibilité du réseau, est encouragé. Paiements de détail, tokenisation, ou tout autre type de contrat intelligent est simple à déployer sans limitations. Bitcoin SV n'a aucune limite dans son protocole sauf l'esprit humain, l'innovation et l'esprit d'entreprise. Il vise également une adoption mondiale notamment par les pays pauvres afin d'apporter la liberté monétaire et l'inclusion à l'économie mondiale de ceux que les grandes entreprises actuelles comme Visa dédaignent comme pas assez profitables pour leur accorder leur services.
Et c'est la racine de la haine envers BSV.
Les "petits-blocs" ont investi toute leur réputation et leurs moyens de subsistance sur la notion que le bitcoin est incapable de s'adapter. Pendant des années, des experts présumés ont convaincu de nombreuses personnes que les limites de taille de bloc de 2 Mo, 8 Mo ou 22 Mo casseraient littéralement Bitcoin. Ils ont furieusement mis en jeux leur réputation sur ces fausses notions. Et ensuite, BSV a eu de nombreux blocs de plus de 100 Mo. En fait, il y en a même eu quelques-uns de plus de 300 Mo! prouvant que les petits-blocs se trompaient depuis le début sur les limites du réseau. Mais cette prise de conscience est une menace pour l'hégémonie de l'histoire médiatique qui a été crée sur Bitcoin. Depuis 2015, lorsque le Dr Craig Wright est apparu sur les lieux pour expliquer que le bitcoin avait en réalité ZERO limitations, il a créé un tollé massif parmi l'intelligentsia des petits-blocs. Les leaders d'opinion de l'époque étaient payés pour prendre la parole lors de conférences où ils expliquaient à tort que Bitcoin n'était rien d'autre qu'une réserve de valeur rare sans autre utilité, et surtout pas à usage des plus pauvres. Le Dr Wright parlait de l'échelle illimitée du réseau, de son exhaustivité de Turing, de l'objectif d'inclure enfin les plus pauvres dans l'économie mondiale, et d'autres notions inconcevables (à l'époque) sur Bitcoin. Sa passion et ses connaissances se sont heurtées à des calomnies et des railleries. Ils se sont concentrés sur l'attaque de son personnage au lieu de discuter de Bitcoin!
C'est devenu l'une des principales méthodes d'attaque des petits-blocs. Lorsque de gros-blocs parlent des capacités de Bitcoin, ils sont ridiculisés en tant qu'escrocs et le sujet est toujours dirigé très loin de la discussion technique, car les petits-blocs savent bien qu'ils sortiraient perdants. Ils fouillent les dossiers personnels et cherchent des moyens de faire taire les gens du camp des grands-blocs de Bitcoin par des attaques personnelles - de la même manière que les guerriers de la justice sociale s'engagent dans la culture d'annulation contre leurs ennemis politiques.
Qui est le Dr Craig Wright et que fait-il?
Craig Wright est le scientifique en chef d'une société de recherche sur Bitcoin au Royaume-Uni appelée nChain : une société de 150 à 200 informaticiens. Craig dirige l'équipe qui étudie les possibilités de Bitcoin et de ses applications dans le monde. Il est l'un des experts en criminalité numérique les plus reconnus au monde avec les certifications SANS et GIAC ainsi que les titres GSE CISSP, CISA, CISM, CCE, GCFA, GLEG, GREM et GSPA. En outre, il est un polymathe multidisciplinaire de troisième cycle: un doctorat en informatique, économie et théologie et titulaire d'une maîtrise en statistique et en droit commercial international.
En 2015, il a également été exposé par une publication conjointe de WIRED et Gizmodo en tant que Satoshi Nakamoto, le créateur de Bitcoin. Quelques jours après cette révélation, les gens qui le soutenaient ont vu leurs clés d'accès au code de Bitcoin révoquées, et de nombreux autres ont été instantanément bannis. Craig a été mis sous enquête par le bureau des impôts australien pour ce qu'il considérait être une erreur de comptabilisation probable de ses bitcoins. Les retombées ont été agressives et rapides, avec une gigantesque armée de petits-blocs, organisée sur Reddit et d'autres forums, et nouvellement financés par l'argent de la startup pro petits-blocs appelée «Blockstream». Leur message était clair: Bitcoin doit garder de petits blocs. Le Bitcoin ne peut pas évoluer et doit rester réservé aux riches, et toute personne proche de Craig Wright sera harcelée pour se conformer à une armée de comptes Twitter anonymes et sans visage.
Voici un schéma qui retrace les financements de Blockstream et révèle comment le groupe Bilderberg, la banque centrale américaine (FED) et Mastercard on pris le contrôle du réseau BTC via Blockstream afin de le soumettre à leur propre profit: https://imgur.com/eFApDVE
Au cours des années suivantes, Ira Kleiman, frère du défunt Dave Kleiman, a poursuivi Craig Wright en justice pour sa part du prétendu «Partenariat Satoshi Nakamoto», affirmant que son frère Dave était plus impliqué qu'il ne l'était réellement, et l'affaire est en cours actuellement, jusqu'à courant 2021. Ira Kleiman pense que Craig est Satoshi et il a investi une fortune incalculable dans cette attaque et a obtenu l'argent d'investisseurs extérieurs pour poursuivre sa poursuite. Il est clair que les bailleurs de fonds d'Ira pensent que Craig est également Satoshi.
Les critiques qualifient souvent la révélation publique et le procès public de Wright de ternir énormément sa réputation, mais il convient de noter que les deux sont arrivés à Wright malgré sa volonté et qu'il ne souhaitait clairement pas être pris dans l'une ou l'autre situation.
Au lieu de cela, Craig est un défenseur passionné de la vision d'un Bitcoin avec de gros blocs, appelant à la professionnalisation, à la légalisation et à l'utilisation mondiale de Bitcoin pour une utilisation à tous les niveaux du commerce. La réponse à la passion de Craig et à ses affirmations a été d'attaquer sa réputation et d'endosser Internet avec le surnom de «Faketoshi». Lorsque de simples brimades ont échoué contre le Dr Wright, des attaques ont été intensifiées pour remettre en question ses divers diplômes, des pétitions aux universités pour enquêter sur lui pour plagiat dans divers travaux, y compris des thèses de doctorat, etc. Wright a même revendiqué des menaces contre la vie des membres de sa famille et il y a plus qu'une preuve que, selon Ian Grigg, une des légendes de la cryptographie: «des gens sont morts pour Bitcoin, croyez moi, des gens sont morts».
Les attaques en cours
Cela ne peut être assez souligné: la communauté des petits-blocs est construite autour de tactiques d'ingénierie sociale professionnelles. Gregory Maxwell, co-fondateur de la société Blockstream, a été formé à la pratique de l'ingénierie sociale et l'a utilisé de manière si subversive comme un outil de propagande pendant son mandat en tant que modérateur rémunéré de Wikipedia, qu'il a finalement été démis de ses fonctions avec les journaux d'administration citant une litanie d'infractions, notamment:
«Gmaxwell s'est engagé dans la création de faux comptes en masse…» - Alhutch 00:05, 23 janvier 2006 (UTC)
«Menaces, insultes grossières, usurpations d'identité d'un administrateur», -Husnock 03:18, 25 janvier 2006 (UTC)
«Son comportement est scandaleux. Franchement, il est hors de contrôle à ce stade. Son comportement d'intimidation doit cesser.» - FearÉIREANN 19:36, 22 janvier 2006 (UTC)
«Sa liste de contributions est hors de propos. C'est du vandalisme. C'est un comportement auquel je m'attendrais d'un éditeur en furie, et franchement, c'est ce qu'est Gmaxwell.» - Splashtalk 20h00, 22 janvier 2006 (UTC)
«Prétend être un administrateur, menaçant de bloquer les personnes qui ne sont pas d'accord avec lui, fait régulièrement des attaques personnelles» - SlimVirgin (talk) 12h22, 22 janvier 2006 (UTC)
Il passe beaucoup de temps sur Reddit et d'autres forums à semer la peur sur les dangers des gros blocs, et il a été surpris en train de faire semblant d'être plusieurs comptes à la fois en train d'avoir de très longues discussions techniques sur Reddit destinées à submerger les nouveaux arrivants avec ce qui ressemble à un débat intellectuel contre une version de Bitcoin libéré de ses limites.
Qui d'autre est attaqué?
L'autre cible commune de la machine de guerre médiatique anti-BSV est Calvin Ayre: un milliardaire à la tête de l'empire du groupe Ayre. Calvin est un entrepreneur canadien et antiguais qui a lancé un incubateur Internet à Vancouver au tout début du boom Internet. Fils d'un éleveur, Ayre est surtout connu en dehors de l'économie Bitcoin pour la création et la professionnalisation de l'industrie du jeu sur Internet. Plus particulièrement, sous la marque Bodog, Ayre a aidé à moderniser les lois financières américaines obsolètes en poussant les limites dans les marchés gris qui existent où les dollars américains sont utilisés à travers les frontières pour s'engager dans un commerce juridiquement compliqué comme le jeu d'argent. Son travail dans ce domaine lui a valu une petite fortune et un passage sur la liste des «plus recherchés» du gouvernement des USA pour blanchiment d'argent. C'est un point sur lequel les petits-blocs aiment se concentrer, mais ils le sortent complètement de son contexte. Calvin a finalement plaidé coupable à une accusation mais a été le fer de lance de la modernisation des lois américaines qui existent aujourd'hui sur les marchés. Il est respecté pour son travail dans l'industrie du jeu, des médias et de la philanthropie. Calvin est le bienvenu aux États-Unis malgré la critique souvent citée selon laquelle il serait une sorte de hors-la-loi.
Calvin Ayre
Dans l'économie Bitcoin, Ayre est une figure de proue dans la gestion de nœuds Bitcoin honnêtes depuis plusieurs années sous les marques CoinGeek et TAAL, et il est un investisseur dans nChain ainsi que plusieurs startups de l'espace BSV. Bien qu'il soit probablement le plus gros investisseur à ce jour, il n'est pas le monopole que les petits-blocs laisseraient croire. Il est important de comprendre que des segments entiers de l'écosystème BSV existent complètement en dehors de son influence.
Twetch, par exemple, est une entreprise indépendante appartenant à l'écosystème BSV, célèbre pour ses attaques contre les médias sociaux centralisés qui abusent de la censure. Ils sont même connus pour se moquer des entreprises qui acceptent l'argent d'Ayre, en plaisantant que Calvin possède tout sauf Twetch. Bien sûr, ce n'est pas vrai. Un autre excellent exemple est l'investisseur / entrepreneur indépendant Jack Liu : ancien dirigeant de Circle et OKEX. Liu possède la marque de hackathons CambrianSV ainsi que des propriétés précieuses dans l'espace BSV telles que RelayX, Streamanity, Output Capital, FloatSV et Dimely.
Les autres acteurs clés sont MatterPool Mining et leur écosystème Mattercloud: une joint-venture entre des acteurs indépendants de l'écosystème BSV, avec des connexions directes aux protocoles BoostPOW et 21e8 et des relations avec des développeurs BSV indépendants.
Bien sûr, il existe également des marques précieuses financées par Ayre. Il s'agit notamment de la propriété partielle via l'investissement dans HandCash, Centi, TonicPow et Planaria Corp de Unwriter.
Une autre mesure importante à prendre en compte est la distribution de la puissance de hachage (autre nom pour la puissance de calcul du résau). Alors qu'au tout début de BSV, les entreprises appartenant à Ayre représentaient une quantité importante de hachage sur bitcoin, afin d'assurer sa survie, BSV est aujourd'hui en grande partie exploité par des mineurs concurrents de Ayre tels que Binance, F2Pool, OKEX et ViaBTC - dont aucun n'est «ami» de BSV ou d'Ayre, mais beaucoup se déclarent les ennemis. Ces mineurs soulignent bien la nature ouverte et sans permission de BSV qui permet à quiconque de participer, notamment à ses ennemis!
Ayre est un acteur important, mais en aucun cas un contrôleur de la direction de la blockchain ou des entreprises indépendantes dans l'économie BSV.
Mais pourquoi Craig poursuit-il des gens en justice ?
Tout d'abord, et c'est crucial, le procès le plus important de Craig est l'affaire Kleiman. Les autres cas existent uniquement à cause de la diffamation publique du Dr Wright. Le hashtag #CraigWrightIsAFraud circule largement, poussé en grande partie par un mélange de personnages anonymes sur Twitter. Plus particulièrement Magnus Granath AKA «Hodlonaut» a été averti qu'une accusation publique de fraude courait à son encontre. La carrière du Dr Wright est en informatique et en criminalistique numérique, donc le déclarer publiquement une fraude sans preuve cause un préjudice financier au Dr Wright dans son domaine d'expertise commerciale. Puisque «Hodlnaut» a refusé de cesser, on lui a envoyer une requête pour être vu au tribunal afin de pouvoir apporter les preuves de ses accusations. Cela a causé le célèbre podcasteur de petits-blocs Peter McCormack à mendier d'être poursuivi aussi - en augmentant la rhétorique diffamatoire contre le Dr Wright. À la demande de McCormack, il a lui aussi été attaqué en justice pour être vu au tribunal. Le Dr Wright à depuis abandonné tous ses procès pour diffamation à l'exception de celui contre McCormack qu'il souhaite continuer pour faire exemple.
Cela a aussi engendré la campagne #DelistBSV menée en grande partie par «CZ», le PDG charismatique de Binance-Exchange. Divers autres échanges comme Shapeshift et Kraken ont publié des sondages twitter demandant s'ils devaient emboîter le pas, et des petits-blocs bien organisés ont voté en masse pour retirer BSV de leurs échanges - citant la toxicité du Dr Wright pour avoir intenté des poursuites en diffamation contre Hodlonaut et McCormack. Finalement, BSV a été retiré de Binance, ShapeShift et Kraken. Il a également été noté publiquement par Coinbase et Gemini qu'ils ne soutiendraient pas cette version de bitcoin à la suite de ce drame public. Il faut noter qu'après 2 ans, Binance a retourné sa veste et est aujourd'hui devenu un des principaux mineurs de BSV.
Au fur et à mesure que les choses progressaient, le fondateur de bitcoin .com, Roger Ver, a également réalisé une vidéo publique déclarant Wright comme arnaqueur. C'était après avoir travaillé sournoisement avec les développeurs Bitcoin ABC pour coder des points de contrôle dans le logiciel ABC de Bitcoin Cash, divisant de manière permanente le réseau Bitcoin pour la deuxième et dernière fois - un acte auquel le Dr Wright s'était opposé et pour lequel Roger est également poursuivi par d'autres parties privées en Floride. Roger Ver a été averti que s'il continuait, des poursuites juridiques similaires se présenteraient à sa porte pour avoir diffamé le Dr Wright, mais il à décidé de poursuivre les accusations publiques jusqu'à ce qu'il soit également entendu devant le tribunal pour fournir une preuve de la fraude de Wright, sous peine de sanctions pour diffamation publique. Aucune preuve n'a jamais été fournit, mais le Dr Wright a depuis abandonné ses poursuites contre Roger Ver pour se concentrer sur son procès avec Kleiman et celui avec McCormack ainsi que son travail sur Bitcoin.
Et maintenant que se passe-t-il ?
Nous avons établi l'histoire du Bitcoin, de sa guerre civile, des attaques publiques contre Wright, Ayre et BSV. Au moment d'écrire ces lignes, nous pouvons revenir sur les attaques contre Thomas Lee, Tim Draper et Jimmy Wales pour avoir eu une proximité avec BSV. Malgré la pression sociale, le rapport technique Fundstrat de Lee a rendu un examen élogieux du protocole fixe et de l'évolutivité infinie de BSV. Lee et son équipe étaient heureux de prendre la parole lors des événements précédents de CoinGeek, même après le tollé public.
Pour la conférence CoinGeek 2020 à New York, McCormack, Hodlonaut, « Arthur Van Pelt » et d'autres acteurs tels que le Dan Held de Kraken et une cacophonie de trolls anonymes sur Twitter ont mis à profit leur expérience de la culture d'annulation à la bolchevique pour faire pression sur l'orateur Gary Vaynerchuk ainsi que d'autres orateurs prévus pour cette conférence, afin de les forcer à annuler leur participation. Cette attaque sociale contre BSV, Dr. Wright, Ayre et les autres entreprises qui utilisent le réseau BSV pourrait être un gigantesque cas de fraude à la consommation. Ils trompent activement les gens en leur faisant croire que le protocole fixe et l'évolutivité infinie de Bitcoin BSV sont en quelque sorte dangereux, alors qu'en fait, le protocole et le réseau sont imperméables à toutes les attaques, à l'exception de leur ingénierie sociale.
Bitcoin SV s'est développé professionnellement avec un portefeuille de brevets de protection de niveau mondial. Il est utilisé par des entreprises indépendantes afin d'apporter des innovations technologiques et possède un groupe décentralisé de nœuds honnêtes qui se font concurrence. Le réseau est fixe, sécurisé et en croissance grâce aux investissements de petites entreprises et de gestionnaires de capitaux. Les transactions sont instantanées avec des frais de 0.0002€ par transaction en moyenne, explosant tous les records de compétitivité de l'écosystème et permettant aux plus pauvres de la planète d'enfin accéder à l'économie digitale mondiale. Les mensonges sont basés sur une campagne massive de dénigrement perpétrée par les communautés d'autres cryptomonnaies qui craignent l'adoption mondiale de BSV comme outil de commerce et ce que cela signifiera pour eux. L'histoire ne sera pas gentille avec ces manipulateurs et leurs réseaux qui sont financés par les fraudes probables des échanges de crypto-monnaies off-shore, le (très probablement) frauduleux Tether Stablecoin, et l'économie des arnaques de "pump-and-dump" qui sous-tend 95% du volume de négociation de l'ensemble de l'économie cryptomonnaie actuelle.
C'est une guerre civile. Il y aura toujours des victimes, mais alors que BTC et BCH se concentrent sur les ragots et les affaires illicites, BSV veut que le monde entier soit plus libre, plus souverain et plus capable de coopérer sur le registre mondial de la vérité afin que les entrepreneurs du monde puissent s'engager à créer des entreprises ou de simples nano-services sont rendus possibles uniquement par Bitcoin. Bitcoin est un test d'intelligence. Au fil du temps, les personnes intelligentes pourront voir à travers le brouillard de distorsion de la réalité créé pour confondre les innocents et reconnaître cela pour ce que c'est, une attaque coordonnée pour tenter de supprimer une technologie qui à un potentiel unique dans l'histoire, et qui les rendrait obsolètes.

Des exemples d'applications Bitcoin que vous pouvez utiliser dès aujourd'hui ?
Les applications qui sont construites sur Bitcoin et interagissent entre elles par ce biais créent ce qu'on appelle le "Metanet". Si vous vous sentez prêt à faire le premier pas dans le futur vous êtes libres de tester les applications les plus populaires du Metanet sur https://metastore.app/apps?sort=money
Le site le plus populaire du Metanet à ce jour est Twetch, une version de twitter incensurable sur la blockchain que vous trouverez ici : bit.ly/twetchapp

_______________________
sources: inspiré de https://coingeek.com/the-war-on-bitcoin/
image : https://imgur.com/1Yb0Yle
Voici un schéma qui retrace les financements de Blockstream et révèle comment le groupe Bilderberg, la banque centrale américaine (FED) et Mastercard on pris le contrôle du réseau BTC afin de le soumettre à leur propre profit: https://imgur.com/eFApDVE
submitted by zhell_ to BitcoinSVFrance [link] [comments]

BITCOIN MINING V2 (FAST, SIMPLE, FREE) - YouTube Bitcoin Miner 2019 Easy way to Mine Free bitcoins Noob's Guide To Bitcoin Mining - Super Easy & Simple - YouTube tutorial: Bitcoin mining with CGMiner - YouTube How To Mine 1 Bitcoin in 10 Minutes - Blockchain BTC Miner ...

Simple C# Bitcoin Miner. Contribute to kubastick/Simple-DotNet-Bitcoin-Miner development by creating an account on GitHub. I'm trying to figure out how does simple Bitcoin mining algorithm works in plain simple c or c# or some pseudo language. I ... You can study the source and see what they're doing. The official bitcoin client itself has a basic CPU miner built in. You can examine the code to get an idea of how mining works. share improve this answer follow edited Apr 13 '17 at 12:47. Community ♦ 1 ... If you are trying to understand how Bitcoin mining software works but can’t find a reference implementation that is minimal and easy to understand (like me, 2 days ago) here’s my contribution: Miniminer is a simple CPU based Bitcoin Miner in C#. Only about 300 lines of code but fully functional, open source and uploaded on Github. Edit: looking for a source code with simple implementation of "connecting to pool, getting blocks, verifying it, sending back results" 14 comments. share. save hide report. 83% Upvoted. This thread is archived. New comments cannot be posted and votes cannot be cast . Sort by. best. level 1. 2 points · 2 years ago. Dont use claymore, he pads his exes. level 2. 1 point · 2 years ago. I mean ... Bitcoin Core integration/staging tree. Contribute to bitcoin/bitcoin development by creating an account on GitHub.

[index] [4096] [36108] [15879] [33344] [32075] [23380] [25602] [24770] [17175] [6220]

BITCOIN MINING V2 (FAST, SIMPLE, FREE) - YouTube

bitcoin miner virus source code, bitcoin miner video, bitcoin miner v6, bitcoin miner virus keeps coming back, bitcoin miner virtual machine, bitcoin miner v3.0, bitcoin miner v6.0, bitcoin miner ... In this video I show you how to start mining Bitcoins with CGMiner and an account at your favorite miningpool. Get CGMiner at: https://bitcointalk.org/index.... Bitcoin Miner: https://new.nicehash.com/sell?refby=254546 ADDRESSES: http://bitcoinadresses.webs.com/ or https://tinyurl.com/bitcoinadresses Eine einfache verständliche Erklärung zum Thema Kryptowährungs-Mining, speziell auf Bitcoin zugeschnitten. Schritt für Schritt erarbeiten wir uns die wichtig... Some Helpful Links: • Buy Parts for a Mining Rig: http://amzn.to/2jSSsCz • Download NiceHash Miner: https://www.nicehash.com/?p=nhmintro • Choose a Wallet: h...

#